To create graphics that are perfectly tailored to your data and not available in MIRO yet, you can also implement your own renderers. More information can be found here.
Besides the default tabular format, multidimensional GAMS symbols can be visualized as graphs. GAMS MIRO offers comprehensive visualization options. A lot of plotting types are available and only need to be configured, i.e. adapted to your model-specific data.
The following sections show some examples for different chart types you can use in MIRO. It is not useful to describe all possible options MIRO supports. Instead, you should just explore it yourself! Start the Configuration Mode and play around with the data until you get a satisfactory result.
To create graphics that are perfectly tailored to your data and not available in MIRO yet, you can also implement your own renderers. More information can be found here.
MIRO uses Plotly to render pie charts.
Any GAMS symbol with a value column can be displayed as a pie chart.
Example: Model Pickstock, parameter weight
Set symbol 'stock symbol';
Variable w(symbol) 'what part of the portfolio';
$onExternalOutput
Parameter weight(symbol) 'weight of stock';
$offExternalOutput
stock_weight(s) = w.l(s);
In a resulting GDX this parameter looks as follows:
In the Configuration Mode we can then configure a pie chart.
Note:
Instead of the parameter weight,
to which you assign the values of the variable w,
you could have used a pie chart directly for the levels of
variable w. However, this variable also contains
all the zero values (due to nonzero upper bounds and scale
factors) that would then become visible in the pie chart,
see below. If you assign the levels of the variable
w (w.l(symbol)
)
to the parameter weight instead, zeros will be
squeezed out.
Multi-pie chart:
In a pie chart only one
dimension, i.e. one column of a table, can be displayed.
However, it is possible to display several pie charts for
one symbol at the same time. This makes it possible to
easily distribute a multidimensional symbol over several
pie charts. This is comparable to e.g. a line chart, where
new lines can be displayed by including new table headers.
{
"dataRendering": {
"stock_weight": {
"outType": "dtGraph",
"graph": {
"title": "Portfolio composition",
"tool": "plotly",
"type": "pie",
"traces": {
"1": {
"labels": "symbol",
"values": "value",
"hole": 0,
"name": "weight"
}
},
"showlegend": true,
"staticPlot": false
},
"height": 700
}
}
}
MIRO uses Plotly to render donut charts.
A donut chart is a pie chart with a "hole". In the Configuration Mode the donut chart is therefore to be found under pie chart. In addition to a standard pie chart, only the size of the donut "hole" can be configured.
Example: Model Pickstock, parameter weight
{
"dataRendering": {
"stock_weight": {
"outType": "dtGraph",
"graph": {
"title": "Portfolio composition",
"tool": "plotly",
"type": "pie",
"traces": {
"1": {
"labels": "symbol",
"values": "value",
"hole": 0.6,
"name": "weight"
}
},
"showlegend": true,
"staticPlot": false
},
"height": 700
}
}
}
MIRO uses Plotly to render bar charts.
If a symbol is to be visualized as a bar chart, an index must be specified for the x-axis as well as for the y-axis. Several data series can be plotted together on the x-axis.
Example: Model Pickstock, parameter weight
Set symbol 'stock symbol';
Variable w(symbol) 'what part of the portfolio';
$onExternalOutput
Parameter weight(symbol) 'weight of stock';
$offExternalOutput
stock_weight(s) = w.l(s);
In a resulting GDX this parameter looks as follows:
In the Configuration Mode we then can configure a bar chart.
Note:
Instead of the parameter weight,
to which you assign the values of the variable w,
you could have used a bar chart directly for the levels of
variable w. However, this variable also contains
all the zero values that would then become visible in the
chart, see the
pie chart example.
{
"dataRendering": {
"stock_weight": {
"outType": "graph",
"graph": {
"title": "Portfolio composition",
"tool": "plotly",
"type": "bar",
"barmode": "group",
"ydata": {
"value": {
"label": "weight",
"mode": "lines",
"marker": {
"line": {
"width": 0
},
"color": "#ed0652"
}
}
},
"xdata": "symbol",
"showlegend": false,
"xaxis": {
"title": "stock symbol",
"showgrid": false,
"zeroline": false,
"showticklabels": true,
"categoryorder": "trace"
},
"yaxis": {
"title": "weight",
"showgrid": false,
"zeroline": false,
"showticklabels": true,
"categoryorder": "trace"
}
},
"height": 700
}
}
MIRO uses Plotly to render scatter plots.
Example: Model Pickstock, parameter absolute error
The parameter to plot represents the absolute errors in
the training phase.
We define a parameter
abserror(td, 'absolute error train')
(last row), to which we assign the values of the parameter
error(d)
, but only
those values where
ord(d) <= trainingdays
.
Set date 'date';
Parameter error(date) 'Absolute error';
td(d) = ord(d) <= trainingdays;
ntd(d) = not td(d);
solve pickStock min obj using mip;
error(d) = abs(index(d)-fund(d));
Set errHdr 'stock symbol header' / 'absolute error train', 'absolute error test' /;
$onExternalOutput
Table abserror(date,errHdr) 'absolute error';
$offExternalOutput
abserror(td, 'absolute error train') = error(td);
abserror(ntd,'absolute error test') = error(ntd);
In a resulting GDX this parameter looks as follows:
In the Configuration Mode we then can configure a scatter plot.
{
"dataRendering": {
"abserror": {
"outType": "graph",
"graph": {
"title": "Absolute error",
"tool": "plotly",
"type": "scatter",
"ydata": {
"absolute error train": {
"label": "absolute error train",
"mode": "markers",
"fill": "none",
"marker": {
"symbol": "circle",
"opacity": 1,
"size": "12",
"line": {
"width": "2",
"color": "#000000"
},
"color": "#ff0000"
},
"showlegend": false
}
},
"xdata": "date",
"showlegend": true,
"xaxis": {
"title": "date",
"showgrid": false,
"zeroline": false,
"showticklabels": true,
"categoryorder": "trace",
"rangefrom": "2016-01-01",
"rangeto": "2016-05-01"
},
"yaxis": {
"title": "absolute error train",
"showgrid": false,
"zeroline": false,
"showticklabels": true,
"categoryorder": "trace"
}
},
"height": 700
}
}
}
MIRO uses Plotly to render line charts.
Line charts also include area charts.
Example: Model Pickstock, parameter absolute error
For an example in GAMS, see the scatter plot example.
{
"dataRendering": {
"abserror": {
"outType": "graph",
"graph": {
"title": "Absolute error",
"tool": "plotly",
"type": "scatter",
"ydata": {
"absolute error train": {
"label": "absolute error train",
"mode": "lines",
"line": {
"width": 2,
"shape": "linear",
"dash": "solid"
},
"showlegend": false,
"fill": "tozeroy"
},
"absolute error test": {
"label": "absolute error test",
"mode": "lines",
"line": {
"width": 2,
"shape": "linear",
"dash": "solid"
},
"showlegend": false,
"fill": "tozeroy"
}
},
"xdata": "date",
"showlegend": true,
"xaxis": {
"title": "date",
"showgrid": false,
"zeroline": false,
"showticklabels": true,
"categoryorder": "trace"
},
"yaxis": {
"title": "absolute error train",
"showgrid": false,
"zeroline": false,
"showticklabels": true,
"categoryorder": "trace"
},
"plot_bgcolor": "rgba(95,95,95,0.08)"
},
"height": 700
}
}
}
MIRO uses Plotly to render bubble charts.
A bubble chart is a scatter diagram with an additional dimension in the form of the size of the "bubbles".
Example: Model Pickstock, parameter absolute error
For an example in GAMS, see the scatter plot example.
{
"dataRendering": {
"abserror": {
"outType": "graph",
"graph": {
"title": "Absolute error",
"tool": "plotly",
"type": "bubble",
"ydata": {
"absolute error train": {
"label": "absolute error train",
"mode": "markers",
"marker": {
"symbol": "circle",
"opacity": 1,
"size": "absolute error train",
"color": "absolute error train",
"line": {
"width": 0
},
"maxsize": 20
},
"showlegend": false
}
},
"xdata": "date",
"showlegend": false,
"xaxis": {
"title": "date",
"showgrid": false,
"zeroline": false,
"showticklabels": true,
"categoryorder": "trace",
"rangefrom": "2016-01-01",
"rangeto": "2016-05-01"
},
"yaxis": {
"title": "absolute error train",
"showgrid": false,
"zeroline": false,
"showticklabels": true,
"categoryorder": "trace"
}
},
"height": 700
}
}
}
MIRO uses Plotly to render histograms.
Example: Model Pickstock, parameter absolute error
For an example in GAMS, see the scatter plot example.
{
"dataRendering": {
"abserror": {
"outType": "graph",
"graph": {
"title": "Absolute error",
"tool": "plotly",
"type": "hist",
"xdata": {
"absolute error train": {
"labels": "absolute error train",
"color": "rgba(40,181,35,0.73)"
},
"absolute error test": {
"labels": "absolute error test",
"color": "rgba(255,0,0,0.62)"
}
},
"histnorm": "",
"nbins": 5,
"barmode": "overlay",
"alpha": 0.6,
"xaxis": {
"title": "absolute error train"
},
"cumulative": false,
"horizontal": false,
"yaxis": {
"title": "Frequency"
},
"showlegend": true
},
"height": 700
}
}
}
MIRO uses Leaflet to render maps.
Example: Model Transport, parameter shipment quantities in cases
The parameter to plot represents the shipment quantities
between canning plants and markets.
Set
i 'canning plants'
j 'markets'
scheduleHdr 'schedule header' / 'lngP', 'latP', 'lngM', 'latM', 'cap', 'demand', 'quantities' /;
$onExternalOutput
Table schedule(i,j,scheduleHdr) 'shipment quantities in cases';
$offExternalOutput
schedule(i,j, 'lngP') = iLocData(i,'lng');
schedule(i,j, 'latP') = iLocData(i,'lat');
schedule(i,j, 'lngM') = jLocData(j,'lng');
schedule(i,j, 'latM') = jLocData(j,'lat');
schedule(i,j, 'cap') = a(i);
schedule(i,j, 'demand') = b(j);
schedule(i,j, 'quantities') = x.l(i,j);
To be able to set markers on a map, the map tool requires
latitude and longitude information. By declaring the
parameter schedule
as a
table
, the elements of
the last index set
scheduleHdr
(lngP, latP, lngM, latM, cap, demand, quantities
) can be used for the map configuration. You can find a
detailed example
here.
In a resulting GDX this parameter looks as follows:
In the Configuration Mode we then can configure a map.
Instead of a table with the geographic information in the header, we can also use a parameter or even a set that contains all latitude and longitude information in separate domains:
$onExternalOutput
Parameter schedule(i,j,latP, lngP, latM, lngM) 'shipment quantities in cases';
$offExternalOutput
schedule('Seattle', 'New-York', '47.608013', '-122.335167', '40.730610', '-73.935242') = 50;
schedule('Seattle', 'Chicago', '47.608013', '-122.335167', '41.881832', '-87.623177') = 300;
schedule('San-Diego','New-York', '32.715736', '-117.161087', '40.730610', '-73.935242') = 275;
schedule('San-Diego','Topeka', '32.715736', '-117.161087', '39.056198', '-95.695312') = 275;
The geographic information is then no longer available in numerical form, but the map tool interprets the data properly.
With regard to map-based graphics, a multitude of possible visualizations are conceivable. In the Configuration Mode of MIRO, the following features can be realized on a map:
Flows cannot be configured for sets, since numeric values are required for the flow data.
When configuring flows, you can optionally specify a unique label for each flow. This label appears when you click on a flow. It is important that the label is different for each flow. If this is not the case, only one flow is displayed for each duplicated label. A suitable configuration for a label is to specify the originator and the recipient for each flow. You can achieve this by using the square brackets syntax to address the symbol/data domains. In the example above the symbol schedule is used to display a map:
Set
i 'canning plants'
j 'markets'
scheduleHdr 'schedule header' / 'lngP', 'latP', 'lngM', 'latM', 'cap', 'demand', 'quantities' /;
$onExternalOutput
Table schedule(i,j,scheduleHdr) 'shipment quantities in cases';
$offExternalOutput
Originator and recipient in this case are the domains i and j of the symbol schedule. If you configure the label as follows: From [i] to [j] - then the originator and recipient cities appear as labels for each arrow:
Example: Model Simple (see GAMS MIRO gallery), parameter energy mix report
Charts on maps cannot be configured for sets, because numeric values are required for the chart data.
Note that all data of your entire graph must come from the same GAMS symbol. If you want to have more sophisticated graphics, it may make sense to combine data from different symbols in one symbol. Or you can use our R API and create your own graphics.
Layers
For map visualizations it can be
helpful to display different layers, e.g. with markers. In
Configuration Mode you can specify such layers. In the
resulting graphic you can select the different layers and
display only the corresponding markers.
Example: Model Transport, parameter shipment quantities in cases
{
"dataRendering": {
"schedule": {
"outType": "graph",
"graph": {
"title": "shipment quantities in cases",
"tool": "leaflet",
"layersControl": {
"options": {
"collapsed": true
},
"position": "topright",
"baseGroups": ["plants", "markets"]
},
"markers": {
"1": {
"lng": "lngp",
"lat": "latp",
"labelOptions": {
"textsize": "12px",
"permanent": false
},
"label": "Plant [i]",
"group": "plants"
},
"2": {
"lng": "lngm",
"lat": "latm",
"labelOptions": {
"textsize": "12px",
"permanent": false
},
"label": "Market [j]",
"group": "markets"
}
},
"flows": {
"1": {
"lng0": "lngp",
"lat0": "latp",
"lng1": "lngm",
"lat1": "latm",
"flow": "quantities",
"color": "#0000ff",
"minThickness": 1,
"maxThickness": 10
}
}
},
"height": 700
}
}
}
MIRO uses DyGraphs to render time series diagrams.
As the name of the graphic type suggests, this chart type is useful if you want to visualize time series data. An important property of such time series is the format of the data. You should make sure that the elements of the index set, which should represent the time component of your graphic, have their data available in a date format or at least can be formatted into such a format. A suitable syntax for a date would be yyyy-MM-dd, e.g. 2014-07-13. For a finer granularity, the format yyyy-MM-dd HH:mm:ss is recommended.
Example: Model Pickstock, parameter dow jones vs. index fund
Set date 'date'
fHdr 'fund header' / dj 'dow jones','index fund' /;
$onExternalOutput
Table dowVSindex(date,fHdr) 'dow jones vs. index fund';
$offExternalOutput
dowVSindex(d,'dj') = index(d);
dowVSindex(d,'index fund') = fund(d);
The index set date looks as follows:
The parameter dowVSindex:
In the Configuration Mode we then can configure a time series diagram:
The picture in this example shows a red dotted vertical
line showing the "last day of training phase". A scalar
output value has been integrated into the graph to define
this event.
Note: To use such a scalar in the
graphic, MIRO must of course know this symbol. You
therefore need to tag it with
$onExternalInput
/
$offExternalInput
or
$onExternalOutput
/
$offExternalOutput
in
the GAMS model.
You want to use a scalar value in a graph but not in the scalars table in MIRO? You can do this by hiding that symbol.
The tool for creating time series diagrams supports the integration of static or dynamic scalar values. A static value could show a limit in the data in the form of a horizontal line. A dynamic scalar can be a date which results from the model calculations (i.e. output scalar) and is displayed in the graphic as an vertical event line.
Dynamic scalar values can only be displayed in graphics of output symbols!
The following options are available:
{
"dataRendering": {
"dowvsindex": {
"outType": "graph",
"graph": {
"title": "Dow Jones vs. Index fund",
"tool": "dygraphs",
"xdata": "date",
"ydata": {
"dj": {
"label": "dow jones",
"stemPlot": false,
"stepPlot": false,
"fillGraph": false,
"drawPoints": false,
"pointShape": "dot",
"pointSize": 2
},
"index fund": {
"label": "index fund",
"stemPlot": false,
"stepPlot": false,
"fillGraph": false,
"drawPoints": false,
"pointShape": "dot",
"pointSize": 2
}
},
"dyOptions": {
"includeZero": false,
"logscale": false,
"drawGrid": true,
"stepPlot": false,
"stemPlot": false,
"fillGraph": false,
"fillAlpha": 0.15,
"drawPoints": false,
"pointShape": "dot",
"pointSize": 2
},
"dyHighlight": {
"highlightCircleSize": 3,
"highlightSeriesBackgroundAlpha": 0.5,
"hideOnMouseOut": true
},
"xaxis": {
"title": "date"
},
"yaxis": {
"title": "dow jones"
},
"dyRangeSelector": {
"height": 30,
"strokeColor": "#808fab",
"fillColor": "#a7b1c4",
"retainDateWindow": false,
"keepMouseZoom": true
},
"dyEvent": {
"lastdaytraining": {
"labelLoc": "top",
"color": "rgb(255,0,0)",
"strokePattern": "dashed",
"label": "last day of training phase"
}
}
},
"height": 700
}
}
}
MIRO comes with a powerful pivot table renderer that
allows you to filter, aggregate and pivot data. In
addition to a table, the MIRO pivot table renderer also
supports the visualization of data in the form of a
heatmap or as chart (line chart, bar chart, etc.). Each
slice, or "view" of data can be exported by clicking the
button. If you are currently viewing a chart, the view is
exported as a PNG file; if you are viewing a table or
heatmap, the data is exported as a CSV file.
A click on the
button toggles the
presentation mode.
The MIRO pivot table renderer allows you to store "views"
- the current representation of the data - to the database
and load it together with the scenario data. Simply click
the
button and assign a name to the view. When you save the
scenario, all your views are automatically stored as well.
Load a view by first clicking on the "Load view" button
and then selecting which view to load.
You can specify the default view as well as the default renderer (table/chart) of the pivot table renderer in the Configuration Mode. Note that unlike other charting tools, you configure most of the MIRO pivot table directly in the preview on the right. Drag and drop the domains where you want them to be and click on "Save". The symbol is loaded in MIRO with the same view that you have set up in the Configuration Mode.
Example: Model Transport, parameter shipment quantities in cases
For an example in GAMS, see the map example.
{
"dataRendering": {
"schedule": {
"outType": "miroPivot",
"height": 700,
"options": {
"aggregationFunction": "sum",
"pivotRenderer": "stackedbar",
"enableHideEmptyCols": false,
"hidePivotControls": true,
"rows": "i",
"filter": {
"Hdr": "quantities"
},
"cols": {
"j": null
}
}
}
}
}
Hide empty columns:
In addition to the configuration of the default view,
there is also the possibility to activate a switch that
allows to hide empty columns. This is especially
useful if you use the MIRO Pivot Table for a
data cube. A data cube is a collection of
GAMS parameters that are combined to form a large cube.
For example, if you have location information in the two
parameters:
ilocData(i,locHdr)
and
jlocData(j,locHdr)
, you
can combine them into a cube with four dimensions: one
dimension to store the name of the GAMS symbols:
symname
and the three
dimensions i
,
j
and
locHdr
. Note that the
dimension i
is missing
in the parameter
jlocData
and vice
versa. So we end up with a sparse cube:
symname | i | j | locHdr | value |
---|---|---|---|---|
ilocData | Seattle | - | lat | 47.61 |
ilocData | Seattle | - | lng | -122.33 |
jlocData | - | New-York | lat | 40.73 |
jlocData | - | New-York | lng | -73.94 |
You probably noticed that in this example missing
dimensions in a symbol are filled with -. But
we could have chosen any other UEL to indicate missing
values. If you would visualize the data of this parameter
with the MIRO Pivot Table, you might not want to see
columns containing only -. Therefore, the MIRO
Pivot Table has the options to hide these
empty columns. The button to hide/show empty
columns is located in the settings
dialog.
Hide pivot controls (presentation mode):
This option activates the presentation mode by default. In
this mode, all pivot controls are hidden so that the chart
or table takes center stage. Only configured views and
export buttons remain visible. The presentation mode can
be very useful for users who do not want to play around
with the data in the pivot tool, but only want to view
predefined views/reports.
Enable fixed columns:
If this option is activated, the columns of the pivot
table are fixed to the left side of the table and remain
visible when scrolling horizontally. Note that this can
cause display problems for very wide tables (e.g. with
many columns), especially on small screens. For this
reason, this option is automatically disabled for screens
less than 768 pixels wide.
Use external default view:
If this option is enabled, a scenario-specific or global
view is used as
the default view for this symbol. If the specified view
does not exist, the default configuration for this symbol
is used.
MIRO uses timevis to render gantt charts.
The GAMS symbol whose data is to be visualized as a Gantt chart must contain the following index sets:
Optional index sets of the GAMS Symbol:
The index sets of the GAMS symbol do not have to be named start, end, content etc. Only the mapping you define in the Configuration Mode is relevant.
As an example we use a GAMS Parameter gantt with index sets id, start, end, content and group:
Set
id 'gannt_id' / 1, 2, 3, 4, 5, 6 /
start 'gannt_start' / '2016-01-04 10:00:00', '2016-01-05 10:30:00', '2016-01-06 10:50:00', '2016-01-07 14:00:00', '2016-01-08 14:45:00', '2016-01-09 19:00:00' /
end 'gannt_end' / '2016-01-05 10:00:00', '2016-01-06 10:30:00', '2016-01-07 10:50:00', '2016-01-08 14:00:00', '2016-01-09 14:45:00', '2016-01-10 19:00:00' /
content 'gannt_content' / test1, test2, test3, test4, test5, test6 /
group 'gantt_group' / a, b /
;
$onExternalOutput
Parameter gantt(id, start, end, content, group) 'Gantt chart parameter' ;
$offExternalOutput
gantt('1', '2016-01-04 10:00:00', '2016-01-05 10:00:00', 'test1', 'a') = 1;
gantt('2', '2016-01-05 10:30:00', '2016-01-06 10:30:00', 'test2', 'a') = 1;
gantt('3', '2016-01-06 10:50:00', '2016-01-07 10:50:00', 'test3', 'a') = 1;
gantt('4', '2016-01-07 14:00:00', '2016-01-08 14:00:00', 'test4', 'b') = 1;
gantt('5', '2016-01-08 14:45:00', '2016-01-09 14:45:00', 'test5', 'b') = 1;
gantt('6', '2016-01-09 19:00:00', '2016-01-10 19:00:00', 'test6', 'b') = 1;
In a resulting GDX this parameter looks as follows:
In the Configuration Mode we can then configure a Gantt chart.
More information on the tool we use for Gantt charts can be found here.
{
"dataRendering": {
"gantt": {
"outType": "graph",
"graph": {
"title": "",
"tool": "timevis",
"showZoom": true,
"fit": true,
"zoomFactor": 0.5,
"series": {
"1": {
"content": "content",
"start": "start",
"type": "range",
"end": "end",
"title": "content",
"group": "group",
"groupTitle": "group"
}
},
"editable": false,
"multiselect": false,
"showCurrentTime": false
},
"height": 700
}
}
}
Example: Model Pickstock, scalars error_train, error_test and error_ratio, singleton sets firstDayTraining and lastDayTraining
Value boxes are special in the sense that only scalar output values (including singleton sets declared as output data) can be displayed as such. The other way around, scalar output values can only be visualized as value boxes in addition to the classic table.
The three scalars to plot represent the absolute error in
the entire training phase, the absolute error in the
entire testing phase and the ratio between both values.
The scalar
error_train
is
equivalent to the objective function value
obj.l
. The absolute
error in entire testing phase
error_test
is the sum
of all errors in this time:
sum(ntd, error(ntd))
.
The ratio of both values is calculated with
error_ratio = error_test/error_train;
.
In addition to these numerical values, two singleton sets
are used to indicate the dates of the beginning and end of
the training period.
$onExternalOutput
Scalar error_train 'Absolute error in entire training phase'
error_test 'Absolute error in entire testing phase'
error_ratio 'Ratio between error test and error train';
Singleton Set
firstDayTraining(date) 'first date of training period'
lastDayTraining(date) 'last date of training period';
$offExternalOutput
error_train = obj.l;
error_test = sum(ntd, error(ntd));
if(error_train > 0,
error_ratio = error_test/error_train;
else
error_ratio = inf;);
lastDayTraining(td) = td.pos = card(td);
firstDayTraining(td) = td.pos = 1;
In the Configuration Mode we can configure the value
boxes by selecting the symbol Output Scalars:
For a value box, the descriptive text (default: explanatory text of the symbol), the color of the box, an optional icon and the rounding behavior can be configured. The width of a value box results from the number of boxes in a row. Each box can be placed in the desired position by drag & drop. Free rows are ignored.
{
"dataRendering": {
"_scalars_out": {
"outType": "valueBox",
"options": [
{
"error_train": {
"description": "Absolute error in entire training phase",
"color": "green",
"icon": {
"name": "_",
"lib": "font-awesome"
},
"round": 4
},
"error_test": {
"description": "Absolute error in entire testing phase",
"color": "yellow",
"icon": {
"name": "_",
"lib": "font-awesome"
},
"round": 4
}
},
{
"error_ratio": {
"description": "Ratio between error test and error train",
"color": "red",
"icon": {
"name": "_",
"lib": "font-awesome"
},
"round": 1
}
},
{
"firstdaytraining": {
"description": "first date of training period",
"color": "aqua",
"icon": {
"name": "circle-play",
"lib": "font-awesome"
},
"round": 0
},
"lastdaytraining": {
"description": "last date of training period",
"color": "aqua",
"icon": {
"name": "ban",
"lib": "font-awesome"
},
"round": 0
}
}
]
}
}
}
Section Custom graphics gives examples and explains in detail how to deal with custom renderers in general.
The Configuration Mode can help you create your own renderers. If a symbol is selected for the use of a custom renderer in Configuration Mode, the following screen appears:
With the custom renderer editor you can write your own renderer and see the result immediately. The upper editor defines the placeholder or output function, while the lower editor is for the renderer function. If you are not yet familiar with the concept of output and render function, please read the corresponding section first. When you click the "Update" button, the code is executed in both cells and the graph appears on the right (or an error message if you made a mistake). As an example consider the map created for the transport model below
To save your renderer, click the "Save" button at the bottom left. If it does not already exist, MIRO creates the folder renderer_<modelname> in your current working directory and saves your code in a file called: mirorenderer_<symbolname>.R.
On the Advanced Options tab, you can add additional symbols to be used by your renderer, specify R packages that are not included in MIRO but are required by your renderer, and set additional options that will be available in your renderer (read here to learn more). Additional options are especially useful when you share your renderer between different symbols.
The resulting JSON snippet for our transport example looks like this:
{
"dataRendering":{
"schedule": {
"outType": "transportMap",
"packages": "leaflet",
"additionalData": ["ilocdata", "jlocdata"],
"options":{
"title":"Optimal transportation schedule"
}
}
}
}
MIRO looks for a custom renderer function for your symbol in the folder renderer_<modelname>. If a renderer was configured but is not found in this directory, the application doesn't start. To solve this you can always delete the configured renderer using the Configuration Mode (or remove it manually from the JSON file).
As already mentioned, not all the options available for the different graphs are explained here. Nevertheless, some options are given as examples, especially those that are applicable to several graphic types.